Chapters 2 & 3 Energy Balances

Work done by the system, W = - Force applied to the system, F Ax

or W= —jF(x)dx

Expansion/Contraction of a Closed System

W, = _J. PAdx=—|PdV Force leads to a change in volume
at constant pressure

Shaft Work for an Open System

out

WS = — J V dP Pump leads to a change in pressure
in at constant volume
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Example 2.1 Isothermal reversible compression of an ideal gas

Calculate the work necessary to isothermally perform steady compression of two moles of an
ideal gas from | to 10 bar and 311 K in a piston. An isothermal process is one at constant tem-
perature. The steady compression of the gas should be performed such that the pressure of the
system is always practically equal to the external pressure on the system. We refer to this type of
compression as “reversible” compression.

Solution: System: closed; Basis: one mole

Wy = —| Pav
¥ ¥
RT *RT A~ 2dV (VzJ .
= - o = — — V = — S— S — T -
P="22 Wy j,, —d RTJV 7 = —RTin( 7 (ig) 2.8
1 1

Vo _®D/P P 1 ig) 2.9
v, (RT)/P, P, 10 )

Wge=-8314 J/mol-K - 311 K In(1/10) = 5954 J/mol

Wee=2(5954) = 11,908 ]

Note: Work is done on the gas since the sign is positive. This is the sign con-
vention set forth in Egn. 2.3. If the integral for Egn. 2.3 is always written as
shown with the initial state as the lower limit of integration and the P and V
properties of the system, the work on the gas will always result with the cor-
rect sign.




Example 2.2 Work as a path fanction (Continued)

Solution: First sketch the process on a diagram to visualize the process as showm in Fig. 2.2.
Determine the initial vohame:

i Example 2.2 Work as a path function
P Consider 1.2 moles of an ideal gas in a piston at 298 K and (0.2 MPa and at volume V. The gas is
3‘;‘ 2 cxpanded isothcrmally to twice its original volume, then cooled isobarically to V. It is then

heated at constant volume back to 7). Demonstrate that the net work is non-zero, and that the
work depends on the path,

Kigure 2.2 Schematic for Example 2.2.

3
¥ = nR(T/P) = —“‘—47‘ 2 moles 831dom TR 28X = 14, 865 car’ (ig)

1. Isothermally expand that gas:

= Wge = -[ Pl = —nRT,In(¥y/ ¥;) (ig)2.11
3 2
_ 1.2 moles (8314) cm” MPa | 298 K -
- L n(2) = —2060 1
2. Isobarically cool dowmn to ¥}:
v, Work is a path function
Wy = -IPzdf = —P,(F,—F,) = -0.1MPa(14,865 cm’) = 1487 J 212 not a state function
vy

3. Hcat at constant volume back to T:

= Wy =0 (hecause d ¥V = () over entire step)

We have retamed the system to its original state and all state propertics have returned to their
initial vahies. What is the total work done on the system?

W=W, +W, 1+, =-aRTIn(Vy/V|)=nPy(Vy—F,) = 57371 (ig) 2.13

Thercfore, we conclude that work is a path function, not a state function.




Exercise: If we reverse the path, the work will be different; in fact, it will be positive instead of
negative (+573.6 J). If we change the path to isobarically expand the gas to double the volume

(W =-2973 J), cool to T, at constant volume (¥ = 0 I), then isothermally compress to the origi-
nal volume (W = <2060 J), the work will be =913 J.

Note: Heat was added and removed during the process of Example 2.2 which has not been
accounted for above. The above process transforms work into heat, and all we have done is com-
puted the amount of work. The amount of heat is obviously equal in magnitude and opposite in
gign, in accordance with the first law. The important thing to remember is that work is a path func-
tion, not a state function.
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Encrgy within the system is composed of the intemal energy (c.g., 1), and the kinctic (mu*/2g,) and
potential encrgy (mgz/g,) of the center of mass. For closed systems, the “check list” equation is:

2 -
m d[u+2”_ +&:7 = dO+dW g+dW g,

e Bc

215

The left-hand side summarizes changes occurring within the system boundaries and the right-
hand side summarizes changes due to inferactions ar the boundaries. It is a reccommended prac-



2 -
v & -—
md[U+2—c+ cz -dQ‘*‘dﬁ.rs'd”-EC

2
a{u+ 5"— - E-z] = dQ+ dWg+ dWpe

gc gc

AU e o AU= O+ W
7 - @1 Wec EC

2.15

2.16

2.19



Example 2.3 Internal energy and heat

In Section 2.5 on page 46 we discusscd that heat flow is related to the energy of system, and now
wie have a relation to quantity changes in encrgy. If 2000 J of heat arc passed from the hot block
to the cold block, how nmch has the internal encrgy of cach block changed?

Solution: First choose a system boundary. Let us initially place system boundarics around cach
of the blocks. Let the warm block be Alock! and the cold block be hlock2. Next, climinate terms
which are zero or are not important. The problem statement says nothing about changes in posi-
tion or velocity of the blocks, so these terms can be climinated from the balance. There is no
shaft involved, so shaft work can be climinated. The problem statement docsn’t specify the pres-
sure, 8o it is common to assume that the process is at a constant atmospheric pressure of 0,101
MPa. The cold block docs expand slightly when it is warmed, and the warm block will contract;
however, since we arc dealing with solids, the work intcraction is so small that it can be
neglected. For example, the blocks together would have to change 10 cm® at 0.101 MPa to equal
1 J out of the 2000 I that arc transferred.

Therefore, the energy balance for cach block becomes:

o
U+ 2-+&8| =d +/44' %V
/Z; 2{] Q s EC

We can integrate the energy balance for cach block:

I = r —
Alyiockt = Datock AUsiocir = Dotocia

The magnitude of the heat transfer between the blocks is the same since no heat is transferred to
the surroundings, but how about the signs? Let’s explore that further. Now, placing the system
boundary around both blocks, the energy balance becomes:

a{v+/§£+ﬂ = ‘;éi/i;s%ec

Note that the composite system is an isolated system since all heat and work interactions across
the boundary are ncgligible. Therefore, AU =0 or by dividing in subsystems,
Alyiockt T Misera = 0 which becomes AU ,.61 = —AUp,012 - Notice that the signs arc
important in keeping track of which system is giving up heat and which system is gaining heat.
In this example, it would be casy to keep track, but other problems will be more complicated,
and it is best to develop a good bookkeeping practice of watching the signs. In this example the
heat transfer for the initially hot system will be negative, and the heat transfer tor the other sys-
tem will be positive. Therefore, the intemal encrgy changes are AU, .. = -2000] and
AUprocky = 2000 3.




Steady-State Open System
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Kigure 2.4 Schematic of a steady-state flow system.
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r 2 - in 2 -~ out N )
. in ¥V . oMY .
0= U+py+X—+& 45" - U+PV+21—+& m™"+p0-w, 223
Enthalpy

Note that the quantity (L' + PF) arises quite naturally in the analysis of flow systems. Flow systems
arc very common, so it makes sense to define a single symbol that denotes this quantity:

HsU+FV
Thus, we can tabulate precalculated values of A and save steps in calculations for flow systems. We
call A the enthalpy.
2 i . 2 out ) .
_ . in v gz . out
0= Z H+ X +8&| 5" - Z H+X + W+ Q+ W
[ 22, &, 22, &, = =8 224 O openaysim,
tniets outlets sioad)-state
balanoe.

When kinetic and potential energy changes are negligible, we may write

‘o = —AHm+Q+ Wy

(one inlet/outlet) 2.26

where AH = H™ _ g™ . We could use molar flow rates for Eqns. 2.24 through 2.26 with the
usual carc for unit conversions of kinctic and potential encrgy. For an open stcady-state system
mecting the restrictions of Eqn. 2.26, we may divide through by the mass flow rate to find

0 = —AH+Q* Wg | (one inlet/outlet) 227

In common usage, it is traditional to relax the convention of keeping only system propertics on
the lett side of the equation. More simply we often write:

‘ AH = Q+ Wy |(onc inlct/outlet) 2.28 11



Consider stcady-state, adiabatic, horizontal operation of a pump, turbine, or compressor. It is possi-
ble to conceive of a closed packet of fluid as the system while it flows through the equipment. After
analyzing the system from this perspective, we can switch to the open-system perspective to gain
insight about the relation between open systems and closed systems, encrgy and enthalpy, and EC
work and shaft work. As a bonus, we obtain a handy rclation for estimating pump work and the
cnthalpy of compressed liquids.

System: closcd, adiabatic; Basis: packet of mass m. The kinctic and potential energy changes
arc negligible: Open System

({ * A 4 AH = Q+ Wy (one mlet/outlet) 228
U+ =+ =d@ + 3 + dWEC -
22, ﬁcé /@ }1“ PR =/'{+ W 230

Integrating from the inlet (initial) state to the outlet (final) state:

our_gin _
U"-U" = Wy

it 3 : C P : . . out
We may change the fonm of the integral representing work via intcgration by parts: W, = J‘ VdP reversible shaft work 231
in
1 ur
WEC - _r“ PaV =—| PV]::" +r VdpP Note: The shafi work given by dWg = VAP is distinct from expansion/contraction
in in work, dWg- = PdV. Moreover, both are distinct from flow work, dEﬂm, = PVdm.

We recognize the tenm PF as representing the work done by the flowing fluid entering and lcaving
the system; it docs not contribute to the work of the device. Therefore, the work interaction with the

14
turbine is the remaining integral, Wg = r“ FdP . Substitution gives,

in

7
= [U+PV™ —[u+PY]" = IW VdP 2.29

in

12



ourt
W, = I VdP reversible shaft work 231 osr\an work for a
in

pump or turbine

where kinetic and
Note: The shaft work given by dWy = VdP is distinct from expansion/contraction potential energy
work, AWy = PdV. Moreover, both are distinct from flow work, dW,, = PVdm. changes are small.

Several practical issues may be considered in light of Eqn. 2.31. First, the work done on the
system 1s negative when the pressure change is negative, as in proceeding through a turbine or
expander. This is consistent with our sign convention. Second, when considering gas flow, the inte-
gration may seem daunting 1f an ideal gas is not involved because of the complicated manner that V
changes with T and P. Rather, for gases, we can frequently work with the enthalpy for a given state
change. The enthalpy values for a state change read from a table or chart lead to W, directly using
Eqgn. 2.30. For liquids, however, the integral can be evaluated quickly. Volume can often be approx-
imated as constant, especially when 7, < 0.75. In that case, we obtain by integration an equation for
estimating pump work:

W= V(P - P") = & iquid 232

2

0 Shaft work for a
liguid pump or
turbine where
kinetic and

potential energy
changes are amall

and 7., <0.75s0

that the fluid is
incompressible.

13



Example 2.4 Pump work for compressing H,O

Use Egn. 2.31 to estimate the work of compressing 20°C H, O from a saturated liquid to 5 and 50
MPa. Compare to the values obtained using the compressed liquid steam tables.

Solution: For H,0, 7, = (.75 corresponds to 212°C, so we are safe on that count. We can calculate

r

the pump work from Eqn. 2.31, reading P** = 0.00234 MPa and ¥* = 1.002 cm*/g from the sat-
uration tables at 20°C:

= AH=VEAP=1.002 cm¥ (50 MPa — 0.00234 MPa) = 50.1 MPa-cm*g for 50 MPa
= AH=VEiaP=1.002 em¥g(100 MPa — 0.00234 MPa) = 100.2 MPa-cm®/g for 100 MPa

A convenient way of converting units for these calculations is to multiply and divide by the gas
constant, noting its different units. This shortcut is especially convenient in this case, e.g.,

AH = 50.1 MPa-cm’/ g -(8.314 J/mole-K)/(8.314 MPa-cm’ /mole-K) = 50.1 kl'’kg
AH = 100.2 MPa-cm®/ g +(8.314 I'mole-K)/(8.314 MPa-cm® /mole-K) = 100.2 kIl'’kg

Note that, for water, the change in enthalpy in kJ/’kg is roughly equal to the pressure rise in MPa
because the specific volume is so close to one and P** << P. That is really handy.

The saturation enthalpy is read from the saturation tables as 83.95 kJ'’kg. The values given in the
compressed liquid table (at the end of the steam tables) are 88.6 kI'’kg at 5 MPa and 130 kJ/kg at 50
MPa, corresponding to estimated work values of 4.65 and 46.1 kJ'’kg. The estimation error in the
computed work 1s about 7 to 9%, and smaller for lower pressures. This degree of precision is gen-
erally satisfactory because the pump work itself 1s usually small relative to other work and terms
(like the work produced by a turbine in a power cycle).

14



General Equation for Open System
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Figure 2.5 Schematic of a general system.
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d .2 -
- M L"+_"_+g_"'
dt 2¢g. g

2 in ) - 2 out
H+Y_+&| ;" _ H+ Y- +&| »" 233
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2 - 2 _ in ) 2 out
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—
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cU

Vo\er/ y Cp= a1/ p

AH=AU+ A(PV) = AU+ R(AT) | Exact for an ideal gas.

Cp=C,+R

Exact for an ideal gas.

| AH =~ VAP, I Liquids below 7, = 0.75 and solids.

T .
TEé
r Tc

Lp!
AU = [ “cmydr
TI

7,
AH = J' Co(T)dT
Tl

7y
AH= [ Cp(T)dT + VAP
T

Ty
AU = AH—A(PV) = AH— VAPzJ' Cp(T)dT
Tl

Ideal gas: exact.

Real gas: valid only if ¥'= constant.

Ideal gas: exact.

Real gas: valid only if P = constant.

Liquid below 7, = 0.75 or solid: reason-

r

able approximation.

Liquid below 7, = (.75 or solid: rea-
sonable approximation when pressure
change is below several MPa.

Note: These formulas do not account for phase changes which may occur:

2.39

1s the reduced temperature calculated by dividing the absolute temperature by the critical

240

241

242

243
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Note that the heat capacity of a monatomic ideal gas can be obtained by differentiating the
internal energy as given in Chapter |, resulting in Cpr= 3/2 R and Cp = 5/2 R. Heat capacities for
diatomics are larger, Cp = 7/2 R, and Cp= 5/2 R near room tcmpcratlnc and polyatomics are larger
still. According to classical theory, each degree of freedom® contributes 1/2R to C= Kinetic and
potential energy each confribute a degree of freedom in each dimension. A monatomic ideal gas has
only three kinetic energy degrees of freedom, thus Cp= 3/2 R. Diatomic molecules are linear so
they have two additional degrees of freedom for the linear (one-dimensional) bond that has kinetic
and potential energy both. In complicated molecules, the vibrations are characterized by modes.
See the endflap to make a quick comparison. Monatomic solids have three degrees of freedom each
for kmcnc and vibrational energy, one for each principle direction, thus the law of Dulong and
Petit, Cp' = 3R is a first approximation. Low-temperature heat capacities of monatomic solids are

18



Example 2.5 Enthalpy change of an ideal gas: Integrating C*(7)

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy using the ideal gas law.

Solution: The ideal gas change is calculated via Eqn. 2.41 and is independent of pressure. The
heat capacity constants are obtained from Appendix E.

T T
HE _ i =I CpdT = I (A+BT+CT +DT)dT =
T T

=A(T-T)+ §(r§— )+ §(7§— T?H%T‘;— /)

0.3063
2

3215x107
3

=—4.224(463.15 — 378.15) + (463.157-378.15%) +

1586107

3 (463.15°-378.15%) +

(463.15" - 378.15%) = 8405 J/mol

19



Example 2.6 Enthalpy of compressed liquid

The compressed liquid tables are awkward to use for compressed liquid enthalpies because the
pressure intervals are large. Using saturated liquid enthalpy values for water and hand calcula-
tions, estimate the enthalpy of liquid water at 20°C H,0 and 5 and 50 MPa. Compare to the val-
ues obtained using the compressed liquid steam tables.

Solution: This is a common calculation needed for working with power plant condensate
streams at high pressure. The relevant equation is Eqn. 2.42, but we can eliminate the tempera-
ture integral by selecting saturated water at the same temperature and then applying the pressure
correction, i.¢., applying Eqn. 2.39, AH = VAP relative to the saturation condition, giving A =
H*“' + VAP. The numerical calculations have already been done in Example 2.4 on page 55. Both
calculations use the same approximation, even though the paths are slightly different. A more
rigorous analysis is shown later in Example 6.1.

Example 2.7 Adiabatic compression of an ideal gas in a piston/cylinder

Nitrogen is contained in a cylinder and is compressed adiabatically. The temperature rises from 25°C
to 225°C. How much work is performed? Assume that the heat capacity is constant (Cp/R = 7/2), and
that nitrogen follows the ideal gas law.

Solution: System is the gas. Closed system, system size changes, adiabatic.

J[U+ngz+§4 = %-’I- We+ dWy .
c c

IdU=deEC = Wec

dU = C,dT= Wy = [C,dT = C,AT = (C,~R)AT (*ig)
- @ 8.314(200) = 4157 J/mol

Note that because the temperature rise is specified, we do not need to know if the process was
reversible.

20



Phase Transitions (Liquid-Vapor)

AU = AP — POy - AHPP - RT

Estimation of Enthalpies of Vaporization

If the enthalpy of vaporization cannot be located in the appendices or a standard reference book, it
may be estimated by several techniques offered and reviewed in the Chemical Engineer’s Hand-
hook and The Properties of Gases and Liquids. One particularly convenient correlation is'”

vap

RT, =

7(1-T,)%354 4 1191 - T,)*6 2.45

where T, is reduced temperature, @ is the acentric factor (to be described in Chapter 7), also avail-
able on the back flap. If accurate vapor pressures are available, the enthalpy of vaporization can be
estimated far from the critical point (i.e., 7, < 0.75) by the Clausius—Clapeyron equation:

Pe R% (T, < 0.75) (ig) 2.46

The background for this equation is developed in Section 9.2. Vapor pressure is often represented
by the Antoine equation, logP* = A — B/(T + C). If Antoine parameters are available, they may be
used to estimate the derivative term of Eqn. 2.46,

ya

AH

dinP*" _ 23006dlog P _ _23026B(T+273.15)" (ie)
a7 T aisn (T+c)’

where T is in °C, and B and C are Antoine parameters for the common logarithm of pressure. For
Antoine parameters intended for other temperature or pressure units, the equation must be carefully
converted. The temperature limits for the Antoine parameters must be carefully followed because
the Antoine equation does not extrapolate well outside the temperature range where the constants
have been fit. If Antoine parameters are unavailable, they can be estimated to roughly 10% accu-
racy by the shortcut vapor pressure (SCVP) model, discussed in Section 9.3,

A=log P+ T(1+@)3; B=-7(1+w)T/3; C=273.15 (ig) 2.47

where the units of P, match the units of P, T, is in K, and T'is in °C.
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Phase Transitions (Liquid-Vapor)

AU = AP — POy - AHPP - RT

AU™ = aH™ — APVY™ = aAH™ - PV - V)= AH™

Ideal Gas Properties

For an ideal gas, we must specify only the reference Tand P'? An ideal gas cannot exist as a liquid or
solid, and this fact completely specifies the state of our system. In addition, we need to set Hy or Uy
(but not both!) equal to zero.

. T .
U = I CpdT+U¥ (ig) 2.49
Ty
. T i
H® = | CpdT+HY (ig) 2.50
Ty

Also at all states, including the reference state, U* =H'* — PV = H* —RT so Uy = Hy® - RT;,.
The 1deal gas approximation is reliable when contributions from intermolecular potential energy
are relatively small. A convenient guideline is, in term of reduced temperature 7, = T/T, and
reduced pressure P, = P/P, where P, is the critcal pressure.

Assume ideal gas behavior if P< P** and T, = 0.5 + 2P, (ig) 2.51
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s50°C 20°C  Tp™ 25°C
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i T, = 25°C
~AHT
AH™P A e using e.g., Eqn. 2.45
60°C
L—’ZS"C e L Lea | 9 Ll .
Te T T, T T 20°C T,
T
r ? v 2 .y
HY = [T Char+amror Ht = [T char—amper mt = [ char—arer
25
50 60
V L
+["cgar + [, Char
() Enthalpy of vapor at 50 °C () Enthalpy of liquid at 60 °C (c). Enthalpy of_ liquid at 20 °C
using liquid ref at 25°C and using vapor ref at 25°C and using vapor ref at 25°C and
AH™ at T, > 50°C. AH"® at T, = 60°C. generalized correlation for A"

Figure 2.6 lllustrations of state pathways to calculale properties involving liquidivapor phase changes.
The examples are representative, and modified paths would apply for states above the normal
boiling point, Ty. Similar pathways apply for solidliquid or solid/vapor transformations. Note
thal a generalized corrvelation is used for AH™ which differs from the normal boiling point
value. The method is intended to be used at subcritical conditions. Pressure corrections are not
illustrated for any paths here.
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Example 2.8 Acetone enthalpy using various reference states

Calculate the enthalpy values for acetone as liquid at 20°C and vapor at 90°C and the difference
in enthalpy using the following reference states: (a) liquid at 20°C; (b) ideal gas at 25°C and
AH" at the normal boiling point; (¢) ideal gas at 25°C and the generalized correlation for AH™"
at 20°C. Ignore pressure corrections and treat vapors as ideal gases.

Solution: Heat capacity constants are available in Appendix E. For all cases, 20°C 1s 293.15K,
90°C is 363.15K, and the normal boiling point is T, = 329.15K.

(a) H"=0 because the liquid is at the reference state. The vapor enthalpy is calculated analogous
to Fig. 2.6, pathway (a). The three terms of pathway (a) are HY = 4639 + 30200 + 2799 = 37,638
J/mol. The difference in enthalpy is AH = 37,638 J/mol.

(b) H* will use a path analogous to Fig. 2.6, pathway (b). The three terms of pathway (b) are
H" = 2366 — 30200 — 4638 = 32472 J/mol. H" is calculated using Eqn. 2.50, H" = 5166 J/mol.
The difference is AH = 5166 + 32472 = 37,638 J/mol, same as part (a).

(c) H* will use a path analogous to Fig. 2.6, pathway (c). The generalized correlation of Eqn.
2.45 predicts a heat of vaporization at 7}, of 29,280 J'mol, about 3% low. At 20°C, the heat of
vaporization is predicted to be 31,420 J/mol. The two steps in Fig. 2.6 (c) are H*=-365 — 31420
= 31785 J/mol. The enthalpy of vapor is the same calculated in part (b), H" = 5166 J/mol. The
enthalpy difference is AH = 5166 + 31785 = 36,950 J/mol, about 2% low relative to part (b).
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Example 2.9 Comparing changes in kinetic energy, potential energy,

internal energy, and enthalpy

For a system of 1 kg water, what are the internal energy and enthalpy changes for raising the tem-
perature 1°C as a liquid and as a vapor from 24°C to 25°C? What are the internal energy enthalpy
changes for evaporating from the liquid to the vapor state? How much would the kinetic and
potential energy need to change to match the magnitudes of these changes?

Solution: The properties of water and steam can be found from the saturated steam tables, inter-
polating between 20°C and 25°C. For saturated water or steam being heated from 24°C to 25°C,
and for vaporization at 25°C:

AUJ) AH(J) AUP(KT) AH™(KT)
water 4184 4184
steam 1362 1816 23043 2441.7

Of these values, the values for AU of steam are lowest and can serve as the benchmark. How
much would kinetic and potential energy of a system have to change to be comparable to 1000 I?

Kinetic energy: If AKE = 1000 J, and if the kg is initially at rest, then the velocity change must be,

A(vz) =2 111001 or Av=44.7m/s
g

This corresponds to a velocity change of 161 kph (100 mph). A velocity change of this order of
magnitude is unlikely in most applications except nozzles (discussed below). Therefore, kinetic
energy changes can be neglected in most calculations when temperature changes occur.

Potential energy: If APE = 1000 J, then the height change must be,

=100 _ypom

1(9'8066k_}D

This is equivalent to about one football field in position change. Once again this is very unlikely
in most process equipment, so it can usually be ignored relative to heat and work interactions.
Further, when a phase change occurs, these changes are even less important relative to heat and
work interactions.
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Example 2.10 Transformation of kinetic energy into enthalpy

Water is flowing in a straight horizontal pipe of 2.5 cm ID with a velocity of 6.0 m/s. The water
flows steadily into a section where the diameter is suddenly increased. There is no device present
for adding or removing energy as work. What is the change in enthalpy of the water if the down-
stream diameter is 5 cm? If it is 10 cm? What is the maximum enthalpy change for a sudden
enlargement in the pipe? How will these changes affect the temperature of the water?

Solution: A boundary will be placed around the expansion section of the piping. The system is

fixed volume, (Wg¢ = 0), adiabatic without shaft work. The open steady-state system is under
steady-state flow, so the left side of the energy balance is zero.

o
it N

1 p)
2 in 2 out i i i
0= H+ 2+ 8| 5" - H+ 2+ m”“'v@dz-}/»%’
Z[ 2g, /gc\ 2 22, /2, =/

inlets outlets

2
Simplifying: AH = _sz—l
8c

Liquid water is incompressible, so the volume (density) does not change from the inlet to the
outlet. Letting A represent the cross-sectional area, and letting D represent the pipe diameter, J

=vi A} =Vdy = vy = (A /4,),
-

_v? l)1 4
AH = — (—- - l}
2&[ Dz)
DyiD; =2 = AH=-6.0> m?/$ (13/1kg-m?/s?) (*=1)/2 = 17 Jikg

Dy/D; =4 = AH=18 Jkg
Dy/D; =% = AH=18 Jikg

To calculate the temperature rise, we can relate the enthalpy change to temperature since they
are both state properties. From Eqn. 2.42, neglecting the effect of pressure,

AH = CpAT *)
J 18.00(1/kg)

Cp = 4184—— = AT = = 0.004K *

P kgK 4184(1/(kgK)) ©
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Nozzles

Nozzles are specially designed devices utilized to convert pressure drop into kinetic energy. Com-
mon engineering applications involve gas flows. An example of a nozzle is a booster rocket. Noz-
zles are also used on the inlets of impulse turbines to convert the enthalpy of the incoming stream to
a high velocity before it encounters the turbine blades.'® Au is significant for nozzles. A nozzle is
designed with a specially tapered neck on the inlet and sometimes the outlet as shown schematically in
Fig. 2.7. Nozzles are optimally designed at particular velocities/pressures of operation to minimize

viscous dissipation.

2 in ) 2 out ] ) )
0= |H+——+ ' | H+ e + m"“’+/£/+/{,,~c+/;4
2g. /2. 28. /&

AH = (-A()/(2g,))

Flow

Figure 2.7 Hllusiration of a converging-diverging nozzle
showing the manner in which inlets and outlets are

lapered.

for nozzles
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Heat Exchangers

Stream A In Shell Stream A Out
E— | € I —-
— [ T T TMube ~ — — T —

] Stream B Out

Stream B In

Figure 2.8 lllustration of a generic heat exchanger with a concurrenl flow paitern. The tube side
wsually consisis of a set of parallel tubes which are illustrated as a single tube for

convenience.
Cocurrent
Countercurrent 0 = —AH+( halfheat exchanger
Superheater
0 = —AH m ,—AHpm, overall heat exchanger
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Adiabatic Turbines or Adiabatic Expanders

Rotors
Stators

Qutlet

Figure 2.9 llustration of a turbine. The rotor (shafi) turns due lo the flow of gas.
The blades connected to the shell are stationary (stators), and are

sometimes curved shapes (o perform as nozzles. The stator blades are
nol shown lo make the rotors more clear.
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Calculation of Shaft Work

ut
W = Jﬂ VdP | reversible pump, compressor, turbine

W= VL(POW—PM) = AP liquid pump
pal

Qutlet

Figure 2.9 Illustration of a turbine. The rotor (shafi) turns due (o the flow of gas.
The blades connected to the shell are stationary (stators), and are

sometimes curved shapes lo perform as nozzles. The stator blades are
not shown to make the rotors more clear.
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2.14 STRATEGIES FOR SOLVING PROCESS
THERMODYNAMICS PROBLEMS

1. Choose system boundaries; decide whether this boundary location will make the system
open or closed.

2. Identify all given state properties of fluids in system and crossing boundaries. Identify
which are invariant with time. Identify your system as steady or unsteady state. (For
unsteady-state pumps, turbines, or compressors, the accumulation of energy within the
device is usually neglected.) For open, steady-state systems, write the mass balance and
solve if possible.

3. Identify how many state variables are unknown for the system. Recall that only two state
variables are required to specify the state of a pure, single-phase fluid. The number of
unknowns will equal the number of independent equations necessary for a solution.
(Remember in a system of known total volume V] that if n is known, the state variable Vis
known.)

4. Write the mass balance and the energy balance. These are the first equations to be
used in the solution. Specify reference states for all fluids if necessary. Simplify energy
balance to eliminate terms which are zero for the system specified in step 1. '3 Combine
the mass balance and the energy balance for open systems.

For unsteady-state problems:

(a) Identify whether the individual terms in the energy balance may be integrated directly
without combining with other energy balance terms. Often the answer is obtained most
easily this way. This is almost always possible for closed-system problems.

(b) If term-by-term integration of the energy balance is not possible, rearrange the equation
to simplify as much as possible before integration.

5. Look for any other information in the problem statement that will provide additional
equations if unknowns remain. Look for key words such as adiabatic, isolated, throt-
tling, nozzle, reversible, and irreversible. Using any applicable constraints of throttling
devices, nozzles, and so on, relate stream properties for various streams to one another and
to the system state properties. Constraints on flow rates, heat flow, and so on. provide addi-
tional equations. With practice, many of these constraints may be recognized immediately
before writing the energy balance in steps 3 and 4.

6. Introduce the thermodynamic properties of the fluid (the equation of state). This provides all
equations relating B, ¥, T, U, H, Cp, and Cy. The information will consist of either 1) the
ideal gas approximation; 2) a thermodynamic chart or table; or 3) a volumetric equation of
state (which will be introduced in Chapter 7). Using more than one of these sources of infor-
mation in the same problem may introduce inconsistencies in the properties used in the solu-
tion, depending on the accuracy of the methods used.

Combine the thermodynamic information with the energy balance. Work to minimize the
number of state variables which remain unknown. Many problems are solved at this point.

7. Do not hesitate to move your system boundary and try again if you are stuck. Do not forget
to try an overall balance (frequently, two open systems can be combined to give an overall
closed system, and strategy 4a can be applied). Make reasonable assumptions.

8. After an answer is obtained, verify assumptions that were made to obtain the solution.
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Example 2.11 Adiabatic, reversible expansion of an ideal gas

Suppose an ideal gas in a piston + cylinder is adiabatically and reversibly expanded to twice its
original volume. What will be the final temperature?

Solution: First consider the energy balance. The system will be the gas in the cylinder. The sys-
tem will be closed. Since a basis is not specified, we can choose 1 mole. Since there is no mass
flow, heat transfer, or shaft work, the energy balance becomes:

a{U+/2‘Z+% =§J+ W+ dWy,.
L. &c

dU = —PdV

In this case, as we work down to step 4 in the strategy, we see that we cannot integrate the sides
independently since P depends on 7. Therefore, we need to combine terms before integrating.

c
—ar = - ng (ig) 2.62

_ dv .
C VdT RT 7 which becomes T

The technique that we have performed is called separation of variables. All of the temperature
dependence is on the left-hand side of the equation and all of the volume dependence is on the
right-hand side. Now, if we assume a constant heat capacity for simplicity, we can see that this
integrates to

(*ig)

(*ig) 2.63

Example 2.11 Adiabatic, reversible expansion of an ideal gas (Continued)

Although not required, several rearrangements of this equation are useful for other problems. Note
that we may insert the ideal gas law to convert to a formula relating Tand P, Using ¥ = RT/P,

B -5

Rearranging,
(}7_;)(0,/12);2 _ (}T;i](c,/k)-fl _ ’% (*ig)

which becomes
G coz

We may also insert the ideal gas law into Eqn. 2.63 to convert to a formula relating P and ¥,
Using T'=PV/R,

PN (C/R) o
( Piyi T (*ig)
( (RICy) i ( (RICH)+1  (Cp/Cy)
2- 5" 75"
pi\V BN V.
which may be written
Cp/
Pr Y const (*ig) 2.65
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Example 2.12 Continuous adiabatic, reversible compression of an

ideal gas

Suppose 1 kmol'h of air at 5 bars and 298 K is adiabatically and reversibly compressed in a con-
tinuous pracess to 235 bars. What will be the outlet temperature and power requirement for the

compressor in hp?

Example 2.12 Continuwous adiabatic, reversible compression of an
ideal gas (Continued)

Solution: Note that air is composed primarily of oxygen and mitrogen uand these bath satisfy the
stipulations for distomic guses with their reduced temperutures high and their reduced pressures
law. In other words, the ideal gas spproximation with Cp /R = 7/2 is clearly uapplicable. Next
oonsider the energy balunce. The system is the compressor, The system is open. Since it is a
stexdy-stale process with no heat transfer, the simplification of the energy balance has heen dis-
cussed on page 73 und shown an page 72, und the energy balance becomes:

Aﬂ-lé* Ws 2.66
Wo can adapt Egn. 2.31 for an ideal gas as follows:
dW g = dH = VdP

In this case, as we work down to step 4 in the strategy, we see that we cannat integrate the sides
independently since P depends on T2 Therefore, we need (o combine terms before integrating,

CpdT = Rr"?” which becomes C?”dr- gdp (ig) 2.67

Onoe again, we have perfaormed separation of variables. The rest of the denvation is entirely
amalogous to Example 2,11, and, i fact, the resultant formula is identical.

(P (R/Cp) .
7R (*ig) 2.68

Note that this formala comes up quite often 2 :m approximation for bath open and closed systems.
Making the appropriate substitutions,

2
7
T, =982 - anK
Adupting the adishatic ensrgy balince anid assuming Cp®= consbant,

(*ig) 2.69

. ) . P (RICH
W = AH'® = CPAT = CJ'T, (;9 —l]

Substituting, ¥ o= 3.58.314(472-298) = 5063 I'mole
At the given flow rute, and redterating that this problem statement specifies a revensible process:
W™ = 5063 Jmole [1000moletr] [ 1hr3600sec)-[ 1hp/(745.71%)] = 1.9%p




Example 2.13 Centinuous, isothermal, reversible compression of an
ideal gas

Repeat the compressiom from the previous example, but comsider steady-state isothermal compres-
sion. What will be the heat removal rute and power requirement for the compressor in hp?

Solution: Let's retum to the perspective of the sectiom ‘Understanding Enthalpy and Shafi
Work" on page 54 and analyze the EC work and flow work for an ideal gas packet of unit mass.
The Wac is,

Wae=—IPdV =~ [(RTV)dV =~ RTIn(¥y'¥)) (*ig)
For an isothermal, sdeal gas, ¥y/'F] = P /P, Noting the reciprocal and negative logarithm,
Wac =-RTIn(F3/F7) = RTIn(Py'7) (*ig)

This is the work to isothermally squeeze an ideal gas packet of unit mass (o a given pressure.
The tlow wark performed on an ideal gas packet of umit mass ix,

W ™ PV o= PV = RT = RT = 0 (*ig)

Theretore, the total reguirement for isothermally compressing an ideal gas packet of unit mass is,

Wg= RTIn(PyP) (*ig)
We - RTln(&] - 8314(298)In5 = 3957 {ig) 2.70
S P] ' mal

Al the given flow rate, and reiterating that this problem statement specifies a reversible process,

W™ = 3987 Jmole-[1000mole’hr] [ The/3600sec] [ 1hp745.71/s] = 1.5 bp

34



Example 2.14 Heat loss from a turbine Example 2.14 Heat loss from a turbine (Continued)

High-pressure steam at a rate of 1100 kg/h inttially at 3.5 MPa and 350°C is expanded 1n a turbine . . o
to obtain work. Two exit streams leave the turbine. Exiting stream (2) is at 1.5 MPa and 225°C 3:;;g2;§esthy:tre;:uf;:oathtﬁ::rcvaﬂ;:r cg;::gr:;l}u{ g; Hy=2716.1 kl/kg. Wo make  table to
and flows at 110 kg/h. Exiting stream (3) is at 0.79 MPa and is known to be a mixture of saturated ) Y ’
vapor and liquid. A fraction of stream (3) is bled through a throttle valve to 0.10 MPa and is
found to be 120°C. Tf the measured output of the turbine is 100 kW, estimate the heat loss of the Stream 1 2 3,4
turbine. Also, determine the quality of the steam in stream (3). H(kJIikg) 3104.8 2860.0 2716.1
Solution: First draw a schematic. Designate boundaries. Both System A and System B are open .
steady-state systems. The energy balance for System A gives, using Wy = —100 kW given in the problem statement,
Stream (1)
35MPa  —  ~ SystemA 0 = H sty —Hytity — Hytiny + O+ Wy=3104.8(1100) — 2860.0(110) - 2716.1(990) + Q + s
350°C \
1100 kg \ 0= “A1L741 K| h 100K 4400
—\> ; h | 36005
/ To find the quality of stream (3), Hym; = H i~ 5 V,
~ “ System B Stream (4) L ¥
""‘ — = Ho= g g _ gy (AHWP)
Stream (2) H 0.1 MPa 37 1
Stream (3 120°C
1.5 MPa @) =0 kgh At 0.79 MPa from the sat'd P table, H* = 718.5 kl/kg and AH' = 2049 kl/kg.
225°C 0.79 MPa
110 kg/h sat’d mix g = 2716.1 — 7185 _ 975
2049

The mass balance gives 71, = 990 kg/h. Next, determine which streams are completely speci-
fied: Streams (1), (2), and (4) are fully specified. Since Stream (3) is saturated, the temperature
and pressure and specific enthalpies of the saturated vapor and liquid can be found, but the qual-
ity needs to be calculated to determine the overall molar enthalpy of the stream. From the steam
tables we find A directly. For H, we use linear interpolation. The value H(1.5 MPa, 225°C) is
not available directly, so we need to first interpolate at 1.4 MPa between 200°C and 250°C to
find H(1.4 MPa, 225°C) and then interpolate between this value and the value at 1.6 MPa:

H(1.4MPa, 225°C) = %(2803.0 +29279) = 2865.5 kl'kg

H(1.6MPa, 225°C) = 2792.8 + i:—'g(zms ~2792.8) = 2854.5 kl/kg

Then to find Hy: Hy = 0.5/(2865.5 + 2854.5) = 2860.0 kJ’kg. For H, we can interpolate in the
superheated steam tables:

H, = 26758+ ?5'—3(2776.6 —2675.8) = 2716.1 klkg
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Example 2.15 Adiabatic expansion of an ideal gas from a leaky tank

An ideal gas is leaking from an insulated tank. Relate the change in temperature to the change in
pressure for gas leaking from a tank. Derive an equation for AU for the tank.

Solution: Let us choose our system as the gas in the tank at any time. This will be an open,
unsteady-state system. There is no inlet stream and one outlet stream. The mass balance gives
dn=—dn™

We can neglect kinetic and potential energy changes. Although the gas is expanding, the system
size remains unchanged, and there is no expansion/contraction work. The energy balance
becomes (on a molar basis):

d(nl) = Hiuﬁn_ﬁould"oul_'_/@*_%gc*_‘}ts

Since the enthalpy of the exit stream matches the enthalpy of the tank, H*“ = H.
d(nU) = —H°¥dn°%* = Hdn. Now H depends on temperature, which is changing, so we are
not able to apply hint 4(a) from the problem-solving strategy. It will be necessary to combine
terms before integrating. By the product rule of differentiation, the left-hand side expands to
d(nU) = ndU~+ Udn . Collecting terms in the energy balance,

ndU = (H- U)dn

Performing some substitutions, the energy balance can be written in terms of 7 and n,

C
(H-U) = PV =RT; dU= CdT; :—%‘-{I—T=d—" (ig)
n
ﬂ/111-7‘-=1n£ *;
RO o

The volume of the tank is constant, (J"= constant); therefore,

. .
mZ = Infz = —]nz+ Inﬂ_ = —VlnI,
£ tF P B R p
substituting,
C C
(-‘-’+1)1n-7-_ - —Rf-’ln-T-, -mE
R T T P

Example 2.15 Adiabatic expansion of an ideal gas from a leaky tank

(Continued)

Recognizing the relation between Cp and Cp, defining y= CI/ C, (=1.4 for an ideal diatomic
gas),note R/Cp = (Cp—Cp)/Cp = 1 -(1/)=(y— 1)/ y:

PA\R/Cp p\(1-(17)
@6

Through the ideal gas law (P¥ = RT), we can obtain other arrangements of the same formula.

(*ig) 2.71

NN

(1/3)-1

AN1/y . . . . ;.
vvi=(5)7 pip = vy = (1T s Tiyr = (Y U (rigy 22

The numerical value for the change in internal energy of the system depends on the reference
state because the reference state temperature will appear in the result:

AU = n/(C AT = Tp) + Up) ~n (CAT - Tp) +Uy) (*ig)

(*ig)
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Example 2.16 Adiabatically filling a tank with an ideal gas

Helium at 300 K and 3000 bar is fed into an evacuated cylinder until the pressure in the tank is
equal to 3000 bar. Calculate the final temperature of the helium in the cylinder (Cp/R = 5/2).

Solution: The system will be the gas inside the tank at any time. The system will be an open,
unsteady-state system. The mass balance is dn = dn™. The energy balance becomes:

d(nU) = H"dn'™ —H"‘%""' +/§+ }&EC yﬁ's

We recognize that H* will be constant throughout the tank filling. Therefore, by hint 4a from the
problem-solving strategy, we can integrate terms individually. We need to be careful to keep the
superscript since the incoming enthalpy is at a different state than the system. The right-hand
side of the energy balance can be integrated to give

f. - of . . .
I H%n = B dn = B -0’y = '™
i i
The left-hand side of the energy balance becomes

AUn) = Ulnf— U = Uln'

Example 2.16 Adiabatically filling a tank with an ideal gas (Continued)

Combining the result with the definition of enthalpy,

vl = 5" = 0"+ Py = U +RT" (ig) 2.73
And with our definition of heat capacity, we can find temperatures:
AU = Cy(TT-T"" = RT™"= T/ = TR+ C)/C, = ﬂ"cp/cv (*ig)

Note that the final temperature is independent of pressure for the case considered here.




Example 2.17 Adiabatic expansion of steam from a leaky tank

An insulated tank contains 500 kg of steam and water at 215°C. Half of the tank volume is occu-
pied by vapor and half by liquid; 25 kg of dry vapor is vented slowly enough that temperature
remains uniform throughout the tank. What is the final temperature and pressure?

Solution: There are some similarities with the solution to Example 2.15 on page 81; however,
we can no longer apply the ideal gas law. The energy balance reduces in a similar way, but we
note that the exiting stream consists of only vapor; therefore, it is not the overall average
enthalpy of the tank:

ur out

d(mU) = — am®™ = H dm

The sides of the equation can be integrated independently if the vapor enthalpy is constant.
Looking at the steam table, the enthalpy changes only about 10 kI’kg out of 2800 kJ’kg (0.3%)
along the saturation curve down to 195°C. Let us assume it is constant at 2795 kJ/kg making the
integral of the right-hand side simply H"Am. Note that this procedure is equivalent to a numeri-
cal integration by trapezoidal rule as given in Appendix B on page 822. Many students forget
that analytical solutions are merely desirable, not absolutely necessary. The energy balance then
can be integrated using hint 4a on page 74.

AU = m'U—m'U' = 2795(m"—m') = 2795(-25) = —69,875 KJ
The quantity m/ = 475, and m‘U* will be easy to find, which will permit calculation of U”. For
each m® of the original saturated mixture at 215°C,

0.5 m? vapor, kg vapor
0.0947 m? vapor

= 5.28 kg vapor

0.5 m" liquid| ke liquid
0.001181 m” Tiquid

= 4234 kg liquid
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Example 2.17 Adiabatic expansion of steam from a leaky tank (Continued)

Therefore,

3
Pl e = 0.00233 m%/ kg
4234+ 528 kg

So the tank volume, quality, and internal energy are:

- 3
v,=220kel W _y56m°
42863

¢' =5.28 kg vapor / 428.63 kg = 0.01230" = 918.04 + 0.0123(1681.9) = 938.7 kl’kg

' = 938.7 kIikg - 500 kg = 469,400 kI

Then, from the energy balance and mass balance,
U7 = (69,875 + 469,400) kJ / 475 kg = 841.0 kl’kg

¥/ = 1.166 m*/ 475 kg = 0.00245 m® /kg

We need to find P/ and 7 which correspond to these state variables. The answer will be along
the saturation curve because the overall specific volume is intermediate between saturated vapor
and liquid values at lower pressures. We will guess 2 (and the corresponding saturation T ),
find g from ¥/, then calculate U{,ﬂc and compare to F=841.0 kl’kg. U fm,c is too high, the
P/ (and T) guess will be lowered.

Since V=¥V"+ q(VV—VL),

q = %’L and from this value of g, Ug‘;h_ = UL+ qUu¥-UY
V —

To guide our first guess, we need Ut <Uf=841.0 kIkg. Our first guess is 7= 195°C. Values for
the properties from the steam tables are shown in the table below. This initial guess gives Ufmk. =
845 kJ/’kg; no further iteration is necessary. The HY at this state is 2789; therefore, our assumption
of H°* = constant is valid.

State P(MPa) T(°C) vt ¥ v AU gq
Initial 2.106 215 0.001181 0.0947 | 91804 16819 | 0.0123
Guess 1.3988 195 0.001149 0.1409 | 82818  1763.6 | 0.0093

Pf=14MPa, T/ = 195°C, AP = 0.7 MPa, AT=20°C
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Important Equations

AU = Q+ Wy closed systems

AH = Q+ Wy open, steady systems

dnlU) = H ™~ H ™ +dQ +dW, . +dW, open, unsteady-state systems
Process Type Work Formula (ig)

dV V, .
Isothermal Wge —IPdV —RTI 7 —RTln;; (ig)
Isobaric Wee = —[PdV = —P(1y—¥y) (ig)

dv .
WEC - —IPdV - —Iconstm (.lg)

or
Adiabatic and reversible AU = CUTy—Ty) = Wge (*ig)
T, P; (R/Cp) . Vi (R/Cy )
I Py Va




Test Yourself

6.

. Explain the terms “closed-system,

Write the energy balance without looking at the book. To help remember the terms, think
about the properties the terms represent rather than memorizing the symbols.

. In the presentation of the text, which side of the balance represents the system and which

terms represent interactions at the boundaries?

LY

open-system,” and “steady state™ to a friend of the
family member who is not an engineer.

. Explain how a reference state helps to solve problems. Select a reference state for water

that is different from the steam table reference state. Create a path starting from saturated
liquid below the normal boiling point, through the normal boiling point, and cooling down
to saturated vapor at the imitial temperature. Use heat capacities and the latent heat at the
normal boiling point to estimate the heat of vaporization and compare it with the steam
table value.

. Write a MATLAB, Excel, or calculator routine that will enable you to calculate heat capac-

ity integrals easily.

Think of as many types of paths as you can from memory (isothermal, adiabatic, etc.) and
try to derive the heat and work flow for a piston/cylinder system along cach path.
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2.19 PRACTICE PROBLEMS

A. General Reductions of the Energy Balance

The energy balance can be developed for just about any process. Since our goal 1s to learn how to
develop model equations as well as to simply apply them, it is valuable practice to obtain the appro-
priate energy balance for a broad range of odd applications. If you can deduce these energy bal-
ances, you should be well prepared for the more common energy balances encountered in typical
chemical engineering processes.

P2.1 A pot of water is boiling in a pressure cooker when suddenly the pressure relief valve
becomes stuck, preventing any steam from escaping. System: the pot and its contents after
the valve is stuck. ( ANS. d[mU]/dt = Q)

P2.2 The same pot of boiling water as above. System: the pot and its contents before the valve is
stuck. ( ANS. d[mU] = inH" + ()

P2.3 An gas home furnace has been heating the house steadily for hours. System: the furmace.
( ANS.AH = Q)(gas furnace)

P2.4 An gas home furnace has been heating the house steadily for hours. System: the house and
all contents. ( ANS. d[mU]/dt = QHM, + Q1 055 ) (gas furnace)

P2.5 A child is walking to school when he is hit by a snowball. He stops in his tracks. System:
the child. ( ANS. A[mU+mv*/2g 1=m_,_ [H+v?/(2g,)]

P2.6 A sealed glass bulb contains a small paddle-wheel (Crookes radiometer). The paddles are
painted white on one side and black on the other. When placed in the sun, the paddle wheel
begins to turn steadily. System: the bulb and its contents. (ANS. AU =~ 0)

now SHOM')

P2.7 A sunbather lays on a blanket. At 11:30 A.M., the sunbather begins to sweat. System: the
sunbather at noon. ( ANS. (d[mU]/df) = mH" + Q)
P2.8 An inflated balloon slips from your fingers and flies across the room. sttcm: balloon and

its contents. (ANS. d[mU -—mvzf,auom,/ilgc]/dt =[H+ vz/(ch)]o "dm/dt + W)
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B. Numerical Problems
P2.9 Consider a block of concrete weighing | kg.

10,12,14,15,16,17

(a) How far must it fall to change its potential energy by 1 kJ? (ANS. 100 m)
(b) What would be the value of its velocity at that stage? (ANS. 44.7 m/s)

P2.10 A block of copper weighing 0.2 kg with an initial temperature of 400 K is dropped into 4 kg
of water initially at 300 K contained in a perfectly insulated tank. The tank is also made of
copper and weighs (0.5 kg. Solve for the change in internal energy of both the water and the
block given Cp=4.184 J/g-K for water and 0.380 J/g-K for copper. (ANS. 7480 I, =7570 T)

P2.11 In the preceding problem, suppose that the copper block is dropped into the water from a
height of 50 m. Assuming no loss of water from the tank, what is the change in internal
energy of the block? (ANS. 7570 I)

P2.12 In the following take Cpjr= 5 and Cp = 7 cal/mol-K for nitrogen gas:

(a) Five moles of nitrogen at 100°C is contained in a rigid vessel. How much heat must
be added to the system to raise its temperature to 300°C if the vessel has a negligible
heat capacity? (ANS. 5000 cal) If the vessel weighs 80 g and has a heat capacity of
0.125 cal/g-K, how much heat is required? (ANS. 7000 cal)

(b) Five moles of nitrogen at 300°C is contained in a piston/cylinder arrangement. How
much heat must be extracted from this system, which is kept at constant pressure, to
cool it to 100°C if the heat capacity of the piston and cylinder is neglected? (ANS.
7000 cal)

P2.13 A rigid cylinder of gaseous hydrogen is heated from 300 K and 1 bar to 400 K. How much
heat is added to the gas? (ANS. 2080 J/mole)

P2.14 Saturated steam at 660°F is adiabatically throttled through a valve to atmospheric pressure
in a steady-state flow process. Estimate the outlet quality of the steam. (ANS. g = 0.96)

P2.15 Refer to Example 2.10 about transformation of kinetic energy to enthalpy. Instead of water,
suppose Ny at | bar and 298 K was flowing in the pipe. How would that change the
answers? In particular, how would the temperature rise change? (ANS. max ~0.001K)

P2.16 Steam at 150 bars and 600°C passes through process equipment and emerges at 100 bars
and 700°C. There is no flow of work into or out of the equipment, but heat is transferred.

(a) Using the steam tables, compute the flow of heat into the process equipment per kg of
steam. (ANS. 288 kl'’kg)

(b) Compute the value of enthalpy at the inlet conditions, A  relative to an ideal gas at the
same temperature, H'®. Consider steam at | bar and 600°C as an ideal gas. Express
your answer as (H" — H'%)/{RT™_ (ANS. —0.305)



P2.17 A 700 kg piston is mitially held in place by a removable latch above a vertical cylinder.
The cylinder has an area of 0.1 m? the volume of the gas within the cylinder initially is 0.1
m? at a pressure of 10 bar. The working fluid may be assumed to obey the ideal gas equa-
tion of state. The cylinder has a total volume of 0.25 m®, and the top end is open to the sur-

rounding atmosphere at 1 bar.

(a) Assume that the frictionless piston rises in the cylinder when the latches are removed
and the gas within the cylinder is always kept at the same temperature. This may seem
like an odd assumption, but it provides an approximate result that is relatively easy to
obtain. What will be the velocity of the piston as it leaves the cylinder? (ANS. 13.8 m/s)

(b) What will be the maximum height to which the piston will nise? (ANS. 9.6 m)

(c) What is the pressure behind the piston just before it leaves the cylinder? (ANS. 4 bar)

(d) Now suppose the cylinder was increased in length such that its new total volume is
0.588 m*. What is the new height reached by the piston? (ANS. ~13 m)

(e) What is the maximum height we could make the piston reach by making the cylinder
longer? (ANS. ~13 m)

P2.18 A tennis ball machine fires tennis balls at 40 mph. The cylinder of the machine is 1 m long;
the installed compressor can reach about 50 psig in a reasonable amount of time. The ten-
nis ball is about 3 inches in diameter and weighs about 0.125 Ib, . Estimate the initial vol-
ume required in the pressurized firing chamber. [Hint: Note the tennis ball machine fires
horizontally and the tennis ball can be treated as a frictionless piston. Don’t be surprised if an
iterative solution is necessary and In (¥3/¥)) = In(1 + AF/V,)]. (ANS. 390 cm3)

P2.19 A 700 kg piston is initially held in place by a removable latch inside a horizontal cylinder.
The totally frictionless cylinder (assume no viscous dissipation from the gas also) has an
area of 0.1 m% the volume of the gas on the left of the piston is initially 0.1 m? at a pressure
of 8 bars. The pressure on the right of the piston is initially | bar, and the total volume is
0.25 m®. The working fluid may be assumed to follow the ideal gas equation of state. What
would be the highest pressure reached on the right side of the piston and what would be the

position of the piston at that pressure? (a) Assume isothermal; (b) What is the kinetic
energy of the piston when the pressures are equal? 16 (partial ANS. 1.6 bars)
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2.20 HOMEWORK PROBLEMS

2.1 Three moles of an ideal gas (with temperature-independent Cp= (7/2)R, Cp= (5/2)R) 1s
contained in a horizontal piston/cylinder arrangement. The piston has an area of 0.1 m? and
mass of 500 g. The initial pressure in the piston is 101 kPa. Determine the heat that must be
extracted to cool the gas from 375°C to 275°C at: (a) constant pressure; (b) constant volume.

2.2 One mole of an ideal gas (Cp = 7R/2) in a closed piston/cylinder is compressed from 7' =
100 K, P' = 0.1 MPa to P/ =0.7 MPa by the following pathways. For each pathway, calcu-
late AU, AH, Q. and Wy : (a) isothermal; (b) constant volume; (c) adiabatic.

2.3 One mole of an ideal jb s (Cp=5R/2) n a closed piston/cylinder is compressed from T'=298 K,
P!= 0.1 MPa to P/= (.25 MPa by the following pathways. For each pathway, calculate
AU, AH, Q, and W (a) isothermal; (b) constant volume; (c) adiabatic.

2.4 One mole of an ideal ﬁas (Cp=TR{2) in a closed piston/cylinder is expanded from T'=700 K,
P!=0.75 MPa to P/ = (.1 MPa by the following pathways. For each pathway, calculate
AU, AH, Q, and W .- (a) isothermal; (b) constant volume; (c) adiabatic.

2.5 One mole of an ideal gas (Cp = 5R/2) in a closed piston/cylinder is expanded from T‘=500 K,
P!=0.6 MPa to P/=0.1 MPa by the following pathways. For each pathway, calculate AU,
AH, Q, and W . (a) isothermal; (b) constant volume; (¢) adiabatic.
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2.6

2.6 (a) What 1s the enthalpy change needed to change 3 kg of liquid water at 0°C to steam at

0.1 MPa and 150°C?

(b) What is the enthalpy change needed to heat 3 kg of water from 0.4 MPa and 0°C to
steam at 0.1 MPa and 150°C?

(c) What is the enthalpy change needed to heat 1 kg of water at 0.4 MPa and 4°C to steam
at 150°C and 0.4 MPa?

(d) What is the enthalpy change needed to change 1 kg of water of a water-steam mixture
of 60% quality to one of 80% quality if the mixture is at 150°C?

(e) Calculate the AH value for an isobaric change of steam from 0.8 MPa and 250°C to sat-
urated liquid.

(f) Repeat part (e) for an isothermal change to saturated liquid.

(g) Does a state change from saturated vapor at 230°C to the state 100°C and 0.05 MPa
represent an enthalpy increase or decrease? A volume increase or decrease?

(h) In what state is water at (.2 MPa and 120.21°C? At 0.5 MPa and 151.83°C? At 0.5
MPa and 153°C?

(i) A 0.15 m® tank containing 1 kg of water at 1 MPa and 179.88°C has how many m® of
liquid water in it? Could it contain 5 kg of water under these conditions?

(J) What is the volume change when 2 kg of H,O at 6.8 MPa and 93°C expands to 1.6 bar
and 250°C?

(k) Ten kg of wet steam at 0.75 MPa has an enthalpy of 22,000 kJ. Find the quality of the
wet steam.
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2.7 Steam undergoes a state change from 450°C and 3.5 MPa to 150°C and 0.3 MPa. Deter-
mine AH and AU using the following:

(a) Steam table data.
(b) Ideal gas assumptions. (Be sure to use the ideal gas heat capacity for water.)

2.8 Five grams of the specified pure solvent is placed in a variable volume piston. What are the
molar enthalpy and total enthalpy of the pure system when 50% and 75% have been evap-
orated at: (1) 30°C, (37) 50°C? Use liquid at 25°C as a reference state.
i d 7,8,12,13,15

(a) Benzene (p" =0.88 gf‘cm3)

(b) Ethanol (p* = 0.79 giem™)

(c) Water without using the steam tables (pL =1 g."cm3)
(d) Water using the steam tables

2.9 Create a table of 7, U, H for the specified solvent using a reference state of H = 0 for liquid
at 25°C and | bar. Calculate the table for: (7) liquid at 25°C and | bar; (i7) saturated liquid
at 1 bar; saturated vapor at 1 bar; (7i7) vapor at 110°C and | bar. Use the Antoine equation
(Appendix E) to relate the saturation temperature and saturation pressure. Use the ideal gas
law to model the vapor phase.

(a) Benzene

(b) Ethanol

(c) Water without using the steam tables
(d) Water using the steam tables

2.10 One kg of methane is contained in a piston/cylinder device at 0.8 MPa and 250°C. Tt under-
goes a reversible isothermal expansion to 0.3 MPa. Methane can be considered an ideal gas
under these conditions. How much heat is transferred?

2.11 One kg of steam in a piston/cylinder device undergoes the following changes of state. Cal-
culate Q and W for each step.

(a) Initially at 350 kPa and 250°C, it is cooled at constant pressure to 150°C.
(b) Initially at 350 kPa and 250°C, it is cooled at constant volume to 150°C.

2.12 In one stroke of a reciprocating compressor, helium is isothermally and reversibly com-
pressed in a piston + cylinder from 298 K and 20 bars to 200 bars. Compute the heat
removal and work required.

2.13 Air at 30°C and 2MPa flows at steady state in a horizontal pipeline with a velocity of 25 m/s.
It passes through a throttle valve where the pressure is reduced to 0.3 MPa. The pipe is the
same diameter upstream and downstream of the valve. What is the outlet temperature and
velocity of the gas? Assume air is an ideal gas with a temperature-independent Cp = 7R/2,
and the average molecular weight of air is 28.8.

2.14 Argon at 400 K and 50 bar is adiabatically and reversibly expanded to | bar through a tur-
bine in a steady process. Compute the outlet temperature and work derived per mole.

2.15 Steam at 500 bar and 500°C undergoes a throttling expansion to | bar. What will be the
temperature of the steam after the expansion? What would be the downstream temperature
if the steam were replaced by an ideal gas, Cp/R = 7/27



2.16 An adiabatic turbine expands steam from 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the
turbine generates 750 kW, what is the flow rate of steam through the turbine?

2.17 A steam turbine operates between 500°C and 3.5 MPa to 200°C and (.3 MPa. If the turbine
generates 750 kW and the heat loss is 100 kW, what is the flow rate of steam through the
turbine?

2.18 Valves on steam lines are commonly encountered and you should know how they work.
For most valves, the change in velocity of the fluid flow is negligible. Apply this principle
to solve the following problems.

(a) A pressure gauge on a high-pressure steam line reads 80 bar absolute, but temperature 1 61 1 7/ 1 8/ 2 1I 2 2
measurement is unavailable inside the pipe. A small quantity of steam is bled out
through a valve to atmospheric pressure at 1 bar. A thermocouple placed in the bleed
stream reads 400°C. What is the temperature inside the high-pressure duct?

(b) Steam traps are common process devices used on the lowest points of steam lines to
remove condensate. By using a steam trap, a chemical process can be supplied with so-
called dry steam, i.c., steam free of condensate. As condensate forms due to heat losses
in the supply piping, the liquid runs downward to the trap. As liquid accumulates in the
steam trap, it causes a float mechanism to move. The float mechanism is attached to a
valve, and when the float reaches a control level, the valve opens to release accumu-
lated liquid, then closes automatically as the float returns to the control level. Most
steam traps are constructed in such a way that the inlet of the steam trap valve is always
covered with saturated liquid when opened or closed. Consider such a steam trap ona
7 bar (absolute) line that vents to 1 bar (absolute). What is the quality of the stream that
exits the steam trap at | bar?

2.19 An overall balance around part of a plant involves three inlets and two outlets which only
contain water. All streams are flowing at steady state. The inlets are: 1) liquid at 1MPa,
25°C, m = 54 kg/min; 2) steam at | MPa, 250°C, s = 35 kg/min; 3) wet steam at (.15
MPa, 90% quality, 72 = 30 kg/min. The outlets are: 1) saturated steam at 0.8 MPa, @ =65
kg/min; 2) superheated steam at 0.2 MPa and 300°C, m = 54 kg/min. Two kW of work are
being added to the portion of the plant to run miscellaneous pumps and other process
equipment, and no work is being obtained. What is the heat interaction for this portion of
the plant in kW? Is heat being added or removed?

2.20 Steam at 550 kPa and 200°C is throttled through a valve at a flow rate of 15 kg/min to a
pressure of 200 kPa. What is the temperature of the steam in the outlet state, and what is
the change in specific internal energy across the value, (U “* — U™)?

2.21 A 0.1 m* cylinder containing an ideal gas (C p/R=3.5)1is initially at a pressure of 10 bar and
a temperature of 300 K. The cylinder is emptied by opening a valve and letting pressure
drop to 1 bar. What will be the temperature and moles of gas in the cylinder if this is accom-
plished in the following ways:

(a) Tsothermally.
(b) Adiabatically. (Neglect heat transfer between the cylinder walls and the gas.)

2.22 As part of a supercritical extraction of coal, an initially evacuated cylinder is fed with
steam from a line available at 20 MPa and 400°C. What is the temperature in the cylinder

immediately after filling? 48
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2.23 A large air supply line at 350 K and 0.5 MPa is connected to the inlet of a well-insulated
0.002 m” tank. The tank has mass flow controllers on the inlet and outlet. The tank is at 300 K
and 0.1 MPa. Both valves are rapidly and simultancously switched open to a flow of
0.1 mol/min. Model air as an ideal gas with Cp = 29.3 J/mol-K, and calculate the pressure

and temperature as a function of time. How long does it take until the tank is within 5 K of
the steady-state value?

2.24 An adiabatic tank of negligible heat capacity and 1 m® volume is connected to a pipeline
containing steam at 10 bar and 200°C, filled with steam until the pressure equilibrates, and
disconnected from the pipeline. How much steam is in the tank at the end of the filling pro-
cess, and what is its temperature if the following occurs:

(a) The tank 1s initially evacuated.
(b) The tank initially contains steam at | bar and 150°C.
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